sábado, 15 de enero de 2011

TORIA DE GRAFOS

En matemáticas y en ciencias de la computación, la teoría de grafos (también llamada teoría de las gráficas) estudia las propiedades de los grafos (también llamadas gráficas). Un grafo es un conjunto, no vacío, de objetos llamados vértices (o nodos) y una selección de pares de vértices, llamados aristas (edges en inglés) que pueden ser orientados o no. Típicamente, un grafo se representa mediante una serie de puntos (los vértices) conectados por líneas (las aristas).

Historia


Puentes de Königsberg.
El trabajo de Leonhard Euler, en 1736, sobre el problema de los puentes de Königsberg es considerado el primer resultado de la teoría de grafos. También se considera uno de los primeros resultados topológicos en geometría (que no depende de ninguna medida). Este ejemplo ilustra la profunda relación entre la teoría de grafos y la topología.
En 1845 Gustav Kirchhoff publicó sus leyes de los circuitos para calcular el voltaje y la corriente en los circuitos eléctricos.
En 1852 Francis Guthrie planteó el problema de los cuatro colores que plantea si es posible, utilizando solamente cuatro colores, colorear cualquier mapa de países de tal forma que dos países vecinos nunca tengan el mismo color. Este problema, que no fue resuelto hasta un siglo después por Kenneth Appel y Wolfgang Haken, puede ser considerado como el nacimiento de la teoría de grafos. Al tratar de resolverlo, los matemáticos definieron términos y conceptos teóricos fundamentales de los grafos.

 Estructuras de datos en la representación de grafos

Existen diferentes formas de almacenar grafos en una computadora. La estructura de datos usada depende de las características del grafo y el algoritmo usado para manipularlo. Entre las estructuras más sencillas y usadas se encuentran las listas y las matrices, aunque frecuentemente se usa una combinación de ambas. Las listas son preferidas en grafos dispersos porque tienen un eficiente uso de la memoria. Por otro lado, las matrices proveen acceso rápido, pero pueden consumir grandes cantidades de memoria.

 Estructura de lista

  • lista de incidencia - Las aristas son representadas con un vector de pares (ordenados, si el grafo es dirigido), donde cada par representa una de las aristas.[1]
  • lista de adyacencia - Cada vértice tiene una lista de vértices los cuales son adyacentes a él. Esto causa redundancia en un grafo no dirigido (ya que A existe en la lista de adyacencia de B y viceversa), pero las búsquedas son más rápidas, al costo de almacenamiento extra.
En esta estructura de datos la idea es asociar a cada vértice i del grafo una lista que contenga todos aquellos vértices j que sean adyacentes a él. De esta forma sólo reservará memoria para los arcos adyacentes a i y no para todos los posibles arcos que pudieran tener como origen i. El grafo, por tanto, se representa por medio de un vector de n componentes (si |V|=n) donde cada componente va a ser una lista de adyacencia correspondiente a cada uno de los vértices del grafo. Cada elemento de la lista consta de un campo indicando el vértice adyacente. En caso de que el grafo sea etiquetado, habrá que añadir un segundo campo para mostrar el valor de la etiqueta.

Ejemplo de lista de adyacencia
  Listahab.jpg

Estructuras matriciales

  • Matriz de incidencia - El grafo está representado por una matriz de A (aristas) por V (vértices), donde [arista, vértice] contiene la información de la arista (1 - conectado, 0 - no conectado)
  • Matriz de adyacencia - El grafo está representado por una matriz cuadrada M de tamaño n2, donde n es el número de vértices. Si hay una arista entre un vértice x y un vértice y, entonces el elemento mx,y es 1, de lo contrario, es 0.

Definiciones

 Vértice

Los vértices constituyen uno de los dos elementos que forman un grafo. Como ocurre con el resto de las ramas de las matemáticas, a la Teoría de Grafos no le interesa saber qué son los vértices.
Diferentes situaciones en las que pueden identificarse objetos y relaciones que satisfagan la definición de grafo pueden verse como grafos y así aplicar la Teoría de Grafos en ellos.

Grafo

Artículo principal: Grafo

En la figura, V = { a, b, c, d, e, f}, y A = { ab, ac, ae, bc, bd, df, ef }.
Un grafo es una pareja de conjuntos G = (V,A), donde V es el conjunto de vértices, y A es el conjunto de aristas, este último es un conjunto de pares de la forma (u,v) tal que u,v \in V, tal que u \neq v. Para simplificar, notaremos la arista (a,b) como ab.
En teoría de grafos, sólo queda lo esencial del dibujo: la forma de las aristas no son relevantes, sólo importa a qué vértices están unidas. La posición de los vértices tampoco importa, y se puede variar para obtener un dibujo más claro.
Muchas redes de uso cotidiano pueden ser modeladas con un grafo: una red de carreteras que conecta ciudades, una red eléctrica o la red de drenaje de una ciudad.

 Subgrafo

Un subgrafo de un grafo G es un grafo cuyos conjuntos de vértices y aristas son subconjuntos de los de G. Se dice que un grafo G contiene a otro grafo H si algún subgrafo de G es H o es isomorfo a H (dependiendo de las necesidades de la situación).
El subgrafo inducido de G es un subgrafo G' de G tal que contiene todas las aristas adyacentes al subconjunto de vértices de G.

Definición:
Sea G=(V, A). G’=(V’,A’) se dice subgrafo de G si:
1- V’ \subseteq V
2- A' \subseteq A
3- (V’,A’) es un grafo
  • Si G’=(V’,A’) es subgrafo de G, para todo v \in G se cumple gr (G’,v)≤ gr (G, v)
G2 es un subgrafo de G.
Grafos1.jpg

    No hay comentarios:

    Publicar un comentario